GA-ASI's Detect and Avoid avionics system helps enable UAS flight through NAS

Advertisement

A General Atomics Aeronautical Systems Inc. (GA-ASI) developed Detect and Avoid (DAA) avionics system was the “key technology” that enabled a UAS flight through the National Airspace System (NAS) on June 12.

The DAA system, which was installed on a NASA-owned Predator B/MQ-9 UAS named Ikhana, allowed the UAS to meet the FAA’s 14 CFR 91.113(b) requirement to “see and avoid” other aircraft during its flight. The UAS took off from southern California.

“Our goal of producing UAS that can be certified to fly in non-segregated airspace took a big step forward today,” says Linden Blue, CEO, GA-ASI.

“Today’s successful flight is testament to the strong relationship that we have with the FAA, NASA’s Armstrong Flight Research Center and Honeywell to produce the definitive standard for unmanned aircraft operation in congested airspaces.”

The DAA system combines automatic collision avoidance with the ability for the pilot to remain ‘well clear’ of other airspace users. The DAA system has a variety of subsystems, including a GA-ASI-developed airborne radar, a TCAS II and DAA tracking capability from Honeywell, Automatic Dependent Surveillance-Broadcast (ADS-B) IN/OUT, and a Conflict Prediction and Display System.

“Our DAA system is more capable than the collision avoidance systems required on today’s commercial manned aircraft and we believe it far exceeds the average pilot’s ability to ‘see and avoid’,” says David R. Alexander, president, Aircraft Systems, GA-ASI.

“The predictive capabilities our system employs create a safe environment for manned and unmanned aircraft to fly together in the NAS.”

Since 2013, GA-ASI has been working with several industry partners including the FAA, NASA’s Armstrong Flight Research Center and Honeywell to develop, flight test, and standardize an airborne DAA system.

GA-ASI says that flight tests on NASA's Ikhana “served as the basis for verification and validation of RTCA DO-365 and DO-366 technical standards for DAA,” which were published by RTCA in May 2017. As a result, this has put GA-ASI on a path towards leading the industry in operating medium-altitude UAS in civilian airspace, the company says.

GA-ASI has been developing the DAA system with “internal funding for inclusion on all its aircraft.” Particularly, the MQ-9B SkyGuardian UAS is provisioned to include the DAA system as a customer option, and GA-ASI’s MQ-25 offering also includes the opportunity for the U.S. Navy to incorporate DAA.

GA-ASI says that the DAA system for MQ-9B is designed to comply with the FAA-designated DO-365, “Minimum Operational Performance Standards for Detect and Avoid Systems.”