

Unmanned Maritime Autonomy Architecture
(UMAA)

Architecture Design Description
(ADD)

Version 1.1a*

(UMAA-INF-ADD)
December 19, 2019

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is unlimited.

UMAA-INF-ADD

 ii

Signature Page

Submitted by:

Date Signed:

19 Dec 2019

 Mark Rothgeb
Unmanned Maritime Autonomy
Architecture Standards Board Chair

PMS 406
Approvals:

 Date Signed:

 CDR Jeremiah Anderson
PMS 406 Advanced Autonomous
Capabilities, Principal Assistant
Program Manager

 Date Signed:

 CAPT Pete Small
Program Manager
PMS 406 Unmanned Maritime Systems,
PEO Unmanned and Small Combatants

UMAA-INF-ADD

 iii

TABLE OF CONTENTS

SECTION PAGE
TABLE OF CONTENTS ... iii
FIGURES ... iv
1.0 INTRODUCTION .. 1
1.1 UMAA SCOPE .. 1
1.2 RELATED STANDARDS ... 2
1.3 DOCUMENT CONTEXT .. 4
1.4 DOCUMENT ORGANIZATION .. 5
2.0 ARCHITECTURE GOVERNANCE PROCESS ... 5
2.1 UNMANNED MARITIME AUTONOMY ARCHITECTURE BOARD (UMAAB) 5
2.2 ADOPTION OF UMAA .. 6
2.3 REFERENCE IMPLEMENTATION ... 6
3.0 AUTONOMY ARCHITECTURE DESIGN PRINCIPLES ... 6
3.1 MODULAR OPEN ARCHITECTURE ... 6
3.2 QUALITY ATTRIBUTES ... 6
3.2.1 ENABLE LOOSE COUPLING .. 6
3.2.2 ALLOW PAIR-WISE CHANGES ... 7
3.2.3 IMPROVE SUSTAINABILITY ... 7
3.2.4 ENABLE NEW CAPABILITIES AND MISSIONS .. 7
3.2.5 ENABLE NET-CENTRICITY ... 7
3.2.6 ENABLE CROSS-PLATFORM DOMAIN FUNCTIONAL COMMONALITY .. 7
3.2.7 ENABLE COMPETITION ... 7
3.2.8 ENABLE FEDERATED ACQUISITION .. 8
3.2.9 SUPPORT VERIFICATION .. 8
3.2.10 SUPPORT SOFTWARE REUSE ... 8
3.2.11 SUPPORT DATA QUALITY .. 8
3.2.12 ENABLE SYSTEM SECURITY .. 8
3.2.13 MANAGE OBSOLESCENCE ... 8
3.2.14 SUPPORT SAFETY CRITICAL SOFTWARE ... 9
4.0 ARCHITECTURE GUIDELINES ... 9
4.1 INTERNAL COMMUNICATION MECHANISMS ... 9
4.2 TRANSPORTS .. 9
4.3 UTILIZE OPEN SOURCE SOFTWARE .. 9
4.4 INFRASTRUCTURE FUNCTIONS SUPPORT ... 10
5.0 ARCHITECTURE DESCRIPTION ... 10
5.1 FUNCTIONAL VIEW ... 11
5.1.1 MISSION MANAGEMENT .. 12
5.1.2 MANEUVER OPERATIONS .. 13
5.1.3 ENGINEERING OPERATIONS .. 14
5.1.4 SENSOR AND EFFECTOR MANAGEMENT ... 15
5.1.5 COMMUNICATIONS OPERATIONS .. 16
5.1.6 SITUATIONAL AWARENESS ... 17
5.1.7 PROCESSING OPERATIONS .. 18

UMAA-INF-ADD

 iv

5.1.8 SUPPORT OPERATIONS ... 19
5.2 INTERFACE VIEW ... 19
5.3 DATA VIEW ... 21
6.0 SUMMARY ... 21
7.0 REFERENCES ... 23
8.0 ACRONYMS AND ABBREVIATIONS ... 24

FIGURES

FIGURE PAGE
FIGURE 1: UNMANNED MARITIME SYSTEMS OPERATIONAL VIEW .. 2
FIGURE 2: FUNCTIONAL ALLOCATION OF UUV AUTONOMY - ASTM (WITHDRAWN IN 2015) 3
FIGURE 3: UMAA PRODUCT HIERARCHY .. 4
FIGURE 4: UMAA HIGH-LEVEL FUNCTIONS ... 11
FIGURE 5: MISSION MANAGEMENT FUNCTIONS .. 12
FIGURE 6: MANEUVER OPERATIONS FUNCTIONS .. 14
FIGURE 7: ENGINEERING OPERATIONS FUNCTIONS .. 15
FIGURE 8: SENSOR AND EFFECTOR MANAGEMENT FUNCTIONS ... 16
FIGURE 9: COMMUNICATIONS OPERATIONS FUNCTIONS .. 17
FIGURE 10: SITUATIONAL AWARENESS FUNCTIONS ... 18
FIGURE 11: PROCESSING OPERATIONS FUNCTIONS .. 19
FIGURE 12: SUPPORT OPERATION FUNCTIONS ... 19
FIGURE 13: PUBLISH/SUBSCRIBE .. 20
FIGURE 14: REQUEST/REPLY .. 20
FIGURE 15: COMMAND/RESPONSE ... 20

* Version 1.1a represents a non-content administrative change to version 1.1 consisting of only
corrected figure numbers and a title change on the approvals page with no additional signoff
required by PMS 406.

UMAA-ADD

1.0 INTRODUCTION

This document describes the Unmanned Maritime Autonomy Architecture (UMAA). The
fundamental purpose of this architecture is to promote the development of common, modular,
and scalable software for Unmanned Maritime Vehicles (UMVs) that is independent of a
particular autonomy implementation. This document consists of guidelines that enable
development, evolution, and innovation of autonomy on-board a UMV without requiring a re-
design of the system. In order to accomplish this, the UMAA will define the:

• Architecture framework – defines high-level architecture and the guidelines for
implementing the functionality associated with UMV autonomy

• Key interfaces – identify the interfaces of common capabilities or functions associated
with UMV autonomy as well as any external interfaces that support UMV autonomy

• Data model –describes the data associated with UMV autonomy key interfaces

• Governance – defines the roles and responsibilities associated with the development of
UMAA, the process for extending/updating UMAA, and the compliance requirements
for UMAA

The UMAA adopts the Institute of Electrical and Electronics Engineers (IEEE) definition of
Architecture as “Architecture is the fundamental organization of a system embodied in its
components, their relationships to each other, and to the environment, and the principles
guiding its design and evolution.”[1] Consequently, the UMAA will define the services and
associated interfaces used to support autonomous operations on a UMV. The degree of
autonomy may vary across UMVs as well as within a UMV over time where autonomy is
defined as “…an unmanned system’s own ability of sensing, perceiving, analyzing,
communicating, planning, decision-making, and acting/executing, to achieve its goals as
assigned by its human operator(s) through designed Human/Computer Interaction or assigned
through another system that the Unmanned System interacts with.” [2]
This document introduces the starting point of the initial architecture. Separate documentation
will be used to expand the definition of the key interfaces, the associated data model for UMV
autonomy, compliance, and governance. The anticipated consumers of this architecture
include, but are not limited to, lead system integrators (government and industry), autonomy
developers, autonomy test and evaluation (T&E) engineers, and in-service engineering support.

1.1 UMAA SCOPE
Unmanned Maritime Systems (UMSs) consist of command and control (C2), one or more
UMVs, and support equipment and software (e.g., recovery system, Post Mission Analysis
applications, etc.). The scope of the UMAA is focused on the autonomy that resides on-board
the UMV. This includes the autonomy for all classes of UMVs and must support varying
levels of communication in mission (i.e., constant, intermittent, or none) with its C2 System.
UMVs conforming to UMAA must be complementary with their C2 System, such as the
Navy’s Common Control System (CCS), TOPSIDE, etc. Whereas the UMAA supports fully
autonomous decision-making on-board the UMV, CCS supports human-on-the-loop decision-
making through an operator interface. The UMAA will consider standards utilized by CCS

 UMAA-INF-ADD

 2

where possible in order to maintain a maximum level of continuity between the efforts. CCS
and UMAA are complementary as outlined in Figure 1.

FIGURE 1: UNMANNED MARITIME SYSTEMS OPERATIONAL VIEW

1.2 RELATED STANDARDS
A number of autonomy architectures and standards have been adopted by different programs
and projects within the Navy’s unmanned underwater and surface vehicles community. Given
the relatively new state of autonomous technology when compared to other enabling unmanned
system technologies, most resulting system architectures are born out of prototype innovations
and layering autonomy solutions on existing systems within the architectural constraints of
those systems. These approaches have driven forward the development of specific autonomous
technologies in the maritime domains at a rapid pace but have not resulted in a modular and
extensible, open-architecture standard that enables the Navy to procure truly modular and
affordable UMS solutions.
Lacking any true central governance within the community, an autonomy architecture standard
that some development efforts have loosely followed is the American Society for Testing and
Materials (ASTM) F2541 Unmanned Undersea Vehicles (UUVs) Autonomy and Control[3].
This standard has served as an initial guide for the unmanned systems development community
since 2006. It provided the first attempt at a governing framework for autonomous systems in
Navy unmanned vehicles. The functional architecture of this ASTM UUV standard is shown in
Figure 2.

 UMAA-INF-ADD

 3

FIGURE 2: FUNCTIONAL ALLOCATION OF UUV AUTONOMY - ASTM (WITHDRAWN IN 2015)

The terminology and definitions defined by this architecture are commonly used in the UUV
autonomy community. However, this standard has been withdrawn and is not used in Program
of Record (PoR) procurement activities. There is no active governance of this standard.
Additionally, there are no reference implementations, verification processes, or formal
software definitions to ensure architecture compliance. As an architecture document without
any supporting interface definitions or verification procedures, the ASTM standard lacked any
ability to support software reuse, modular software components, or upgrades to key
technologies.
Two standards with substantial effort behind them that have been used within Navy S&T
include the Joint Architecture for Unmanned Systems (JAUS)[4] and the Unmanned System
(UxS) Control Segment (UCS) Architecture[5]. Both JAUS and UCS have been developed
with the goal of promoting modularity and interoperability by defining a set of common
unmanned system capabilities and modeling the data associated with their interfaces. JAUS
was initially developed by the JAUS Working Group (WG). The JAUS WG was chartered by
the Deputy Director, Office of the Undersecretary of Defense, Acquisition, Technology, and
Logistics (OUSD (AT&L)), Strategic & Tactical Systems/Land Warfare to develop an
architecture that facilitates the development of modular unmanned systems with increased
interoperability. In 2005, the JAUS WG began its transition to Society of Automotive
Engineers (SAE) with the initial publications under SAE being based on the documents
published under the WG. JAUS employs a service-oriented architecture approach, representing
unmanned system capabilities as defined services with defined message-based interfaces.
JAUS currently defines approximately 75 services that address common unmanned system
capabilities including vehicle mobility, environment sensing, and serial manipulators. These

 UMAA-INF-ADD

 4

services and interface definitions are used extensively by unmanned ground vehicle programs.
The use of JAUS in UMSs occurs on a case-by-case basis, typically on prototype UMVs. Use
in the maritime domain is not widespread and varying additional services are typically defined
to completely address on-board UMV autonomy.
The UCS Architecture began as the Unmanned Aircraft System (UAS) Control Segment
(UCS) Architecture and was initially developed by the UCS WG of the OUSD (AT&L).
OUSD (AT&L) transitioned this effort to the AS-4 UCS Technical Committee in April 2015
with the publication of Release 3.4. With the transition, the scope of UCS was increased to
include all vehicle domains. The UCS Architecture provides a Service Oriented Architecture
(SOA) and modeling framework for the specification, integration, implementation, and
deployment of control segment software. The architecture is centered on a service package
Platform Independent Model (PIM) and associated foundation models. The UCS Architecture
defines platform independence as the independence of the software operating environment,
which allows it to be implemented on different computing infrastructures and with different
communication protocols. The UCS Architecture is extensible and describes approximately
150 application software services to support the current capabilities of the Department of
Defense (DoD) UxS portfolio. The UCS architecture is not focused on on-board UMV
autonomy.

1.3 DOCUMENT CONTEXT
The UMAA documents’ hierarchy is structured into three tiers to delineate and guide the level
of detail and purpose of the documents within each tier as shown in Figure 3. The tiers are
described as follows:
1. Governing Documents

This tier includes the Architecture
Design Description (ADD),
governance, and compliance
documents. The architecture design
is described at the functional level
and provides the overall technical
guidance for the lower tiers.

2. Modeling Documents
This tier defines the architecture data
model and services at an abstract
level that is independent of the
implementation and deployment
details.

3. Interface Documents
This tier defines the detailed
interfaces for the services defined
by the architecture. Implementation details such as middleware and software development
are defined in this tier to support interoperability between software services.

FIGURE 3: UMAA PRODUCT HIERARCHY

 UMAA-INF-ADD

 5

1.4 DOCUMENT ORGANIZATION
Section 1: Introduction and Context – Identifies the applicability of this document, its purpose,
its scope, and its intended audience.
Section 2: Architecture Governance Process– Describes the supporting processes related to the
architecture.
Section 3: Autonomy Architecture Design Principles – Describes the non-functional
requirements the architecture has been designed to address.
Section 4: Architecture Guidelines – Defines the constraints on the architecture and how they
affect the architecture decisions made within this document.
Section 5: Architecture Description – Provides a description of the UMAA by summarizing the
key functions of the system and how those aspects are significant to the architecture, presenting
the structure of the system through its services and their interactions, and describing the
management of data and documenting the data flows.
Section 6: Summary
Section 7: References
Section 8: Acronyms and Abbreviations

2.0 ARCHITECTURE GOVERNANCE PROCESS

The UMAA must evolve to incorporate new services, re-design of interfaces, introduction of
new core capabilities, or re-arrangement of architectural services. These modifications and
additions will be reviewed for incorporation into UMAA according to the UMAA governance
process. When found not to be beneficial for the UMAA community, the proposed changes
will remain as custom definitions for a specific program when no other standardized service or
interface is incorporated into the UMAA. The governance process is defined external to this
document.

2.1 UNMANNED MARITIME AUTONOMY ARCHITECTURE BOARD (UMAAB)
The UMAAB’s membership is comprised of board members and organizations in accordance
with a separately maintained charter[6] instituted by PMS 406 in coordination with key
stakeholder leadership (resource sponsors, Program Executive Offices (PEOs), etc.). The
UMAAB will coordinate efforts with all applicable stakeholders to provide a process and
forum for discussion and resolution of issues in developing the architecture, work with UxS
programs, and ensure architecture recommendations are coordinated and transparent.
The UMAAB will develop and maintain this ADD and associated documentation. The
UMAAB will establish a process by which modifications and additions can be introduced into
the architecture as well as defining conformance with UMAA. The ADD will be updated in
accordance with the defined governance process by the UMAAB, adding guidance to the ADD
to document required architectural changes.
The UMAAB shall recommend policies to the PMS 406 PM who will coordinate with Navy’s
Digital Warfare Office (DWO), maritime system resource sponsors (N95, N96, and N97),

 UMAA-INF-ADD

 6

Navy acquisition leadership, and NAVSEA leadership to support decisions and implementation
for UMV development and acquisition programs with a significant on-board autonomy
capability.

2.2 ADOPTION OF UMAA
PMS 406 is coordinating with multiple stakeholders to establish the UMAA as a Navy standard
that can be used in future autonomous vehicle acquisitions. The goal is for existing programs
to produce either a transition plan or a request for exemption by FY22 for approval.
PMS 406 intends to promulgate the UMAA ADD as the umbrella document under which
standard UMAA Interface Control Documents (ICDs) will be created to establish standards-
based autonomy software interfaces across the family of Navy UMVs.

2.3 REFERENCE IMPLEMENTATION
PMS 406 will maintain and own reference implementations available for use and review by the
community as Government Open Source Software (GOSS) as a starting point for UMV
programs making it available for use by the broader UMV community. The reference
implementations will provide exemplar interfaces and software tools for compliance
verification, and enable a service-based acquisition approach allowing autonomy services to be
leveraged, replaced, or augmented through the lifecycle of an UMV program.

3.0 AUTONOMY ARCHITECTURE DESIGN PRINCIPLES

This section defines quality attributes and non-functional requirements that inform the design
of UMAA. These design principles are manifested in the development of open interfaces and
services.

3.1 MODULAR OPEN ARCHITECTURE
The architecture must adhere to best practices for open architecture systems engineering. This
means the architecture will support software that is modular, decomposable, replaceable, and
interchangeable, so that functional services may be used in a variety of applications through
well-defined open interfaces.

The openness of the autonomy architecture can be evaluated using the U.S. Navy’s Open
Architecture Assessment Tool (OAAT), Version 3.0. OAAT and its supporting documents are
available on the Naval Open Architecture website[7] .

3.2 QUALITY ATTRIBUTES
The UMAA is intended to be built to satisfy a set of common principles or attributes. These
attributes will be used to evolve the UMAA as new requirements and technologies emerge.

3.2.1 Enable Loose Coupling
The architecture must enable UMVs to be composed of a set of separate loosely coupled
services resulting in a modular system. These services will include (but not limited to) vehicle
control, sensors, payloads, and situational awareness.

 UMAA-INF-ADD

 7

3.2.2 Allow Pair-Wise Changes
The architecture must enable pair-wise changes without unnecessarily impacting other
services. If two services require an external interface change, other services using that data
shall not be required to recompile and redeliver their software if they do not use the new or
modified interface.

3.2.3 Improve Sustainability
The architecture must support modular services that will enable replacement of one of the
services without impacting any of the others. This requirement will result in improved
sustainability of the UMVs employing the architecture by enabling targeted updates due to
capability improvements or obsolescence.

3.2.4 Enable New Capabilities and Missions
The architecture must support upgrading to new capabilities including those that support (but
not limited to) long duration autonomous operation, multi-vehicle missions, and manned-
unmanned teaming. The architecture must support this ability to integrate new capabilities into
the autonomy with minimal changes allowing for a very high degree of reuse and minimal
rework of services. The update schedules of each of the services may differ depending on
technology insertion rates. The aggregation of all old and new services must result in a
seamlessly integrated operational system.

3.2.5 Enable Net-Centricity
The DoD has mandated net-centric requirements on all platforms and programs. The UMAA
needs to be interoperable with net-centric services and provide useful services for others to
utilize. Services provided by the UMAA to external platforms could include (but are not
limited to) position data, environmental data, contact data, and health status. UMAA will
leverage existing standards from the Navy enterprise to the maximum extent possible in
support of net-centricity.

3.2.6 Enable Cross-Platform Domain Functional Commonality
The UMAA should capitalize on the commonality between autonomy capabilities and
architecture regardless of the UMV domain. The UMAA will support cross-platform domain
service definitions. Cross-platform domain for UMAA will explicitly include surface and
underwater UMVs, but will include air and ground domains as a goal. UMAA is expected to
share common services between platform domains and support the development of common
software implementations. UMAA modularity will enable domain-specific configurations with
maximum reuse of services and provide modular service interfaces to support platform
domain-specific extensions when needed.

3.2.7 Enable Competition
The desire to incorporate innovative capabilities requires that the UMAA enables competition
for software services. The UMAA and derived documents will provide well-documented,
modular interfaces that are based upon standards to support increased service-level competition
to enable innovation and reduce cost. The architecture will be under configuration management
control to ensure a library of software services is created over multiple programs. The goal is

 UMAA-INF-ADD

 8

for programs to have the option to integrate UMAA compliant services from multiple
performers to produce an autonomy solution faster, better, and with reduced risk of vendor-
lock.

3.2.8 Enable Federated Acquisition
The architecture aims to allow programs to spread development responsibility among
performers potentially across multiple PoRs. UMAA will support upgrades for new capability
when required by incorporating feedback from programs into the UMAA as determined by its
governance.

3.2.9 Support Verification
The UMAA will provide properly structured services, interfaces, and capabilities that allow for
verification of the system. All architecture requirements and all implemented interfaces will be
verifiable.

3.2.10 Support Software Reuse
The architecture must define software services such that multiple programs can leverage the
software implementations. Programs incur costs to design, develop, verify, and validate
software. Programs may reduce cost by reusing or extending pre-existing software services
when functionality is deemed appropriate by the program.

3.2.11 Support Data Quality
The UMAA must support data quality attributes including validity, completeness, consistency,
and timeliness for information shared among services. The use of well-defined ICDs will
ensure data are complete and enable testing for validity. Consistency and timeliness are
implementation and integration concerns (e.g., designating a single, authoritative data source;
Quality of Service (QoS) transport guarantees), but loosely coupled, transport-independent
services will allow service developers and system integrators the flexibility needed to achieve
those goals.

3.2.12 Enable System Security
Cyber threats have dramatically increased and will continue to pose a significant threat to all
U.S. Navy platforms. UMVs represent a more dramatic threat to cyber vulnerabilities due to
the fact that there would be no manned intervention onboard the platform to identify, remedy,
or address a cyber-attack. While these considerations are primarily program-, mission-, and
vehicle-specific, the UMAA will not preclude incorporation of cybersecurity measures
addressing vehicle software, communications, multi-level security, and anti-tamper features.

3.2.13 Manage Obsolescence
Managing obsolescence is required for system sustainability and cost avoidance, and to support
functional improvements. The UMAA must allow autonomous systems to evolve as new
technologies replace older technologies. It is anticipated that frequent updates of the autonomy
technologies will occur on unmanned platforms. As standards evolve, and hardware and
software technologies mature, it is anticipated that the infrastructure technologies on which this
architecture is built will require upgrades (such as computing hardware, operating systems,

 UMAA-INF-ADD

 9

etc.). The set of UMAA services will change or evolve as new technologies become available
and more affordable. Backward compatibility becomes a key factor in choosing new
technologies. The architecture must embrace modularity and open system engineering, and
provide strong interface management. The use of virtualization and/or containerization to
support obsolescence assurance may be applicable in specific implementations.

3.2.14 Support Safety Critical Software
Safety critical software includes any software whose inadvertent response to stimuli, failure to
respond when required, out of sequence response, or other type of response failure can result in
a safety or significant material loss failure. The UMAA architecture will facilitate separation
of “Safety Critical” and “Non-Safety Critical” software modules. Separate modules designed
in accordance with the modular and open interfaces will facilitate flexibility and reduce the
burden of testing when software updates do not impact the safety critical autonomy software.
This separation addresses the high level of effort and time associated with the testing and
validation of safety critical autonomy software.

4.0 ARCHITECTURE GUIDELINES

This section defines the architecture guidelines for the UMAA.

4.1 INTERNAL COMMUNICATION MECHANISMS
Communication between services in the UMAA should utilize publish/subscribe, request/reply,
or command/response mechanisms. Other mechanisms (e.g., database sharing) should be
limited to cases when these mechanisms are not feasible. In addition, the publish/subscribe,
request/reply, or command/response mechanisms should follow the patterns described in
section 5.25.1.7. Deviations may be needed depending on program requirements.

4.2 TRANSPORTS
The functionality provided by UMAA services should be independent of the transport used to
provide the underlying data link. Service functionality should not rely on any specific
transport but instead should handle any specific data link requirements by identifying QoS
parameters such as the prioritization of message traffic. This also allows for interface
compliance verification independent of the transport technology.

4.3 UTILIZE OPEN SOURCE SOFTWARE
Open Source Software (OSS) should be used within the implementation unless there is
insufficient life-cycle cost Return on Investment (ROI). In addition, published industry
standards should also be used where applicable. Examples of rationale for using a non-OSS
solution (i.e., a commercial or proprietary product) could include:

• Reduced development costs over the life of the interface/service
• Needed performance improvements (as identified by system key requirements)
• Reduced deployment costs
• Reduced maintenance costs over the life of the interface/service
• No viable OSS solution available that incorporates cybersecurity requirements

 UMAA-INF-ADD

 10

OSS licensing restrictions should also be considered when it restricts government use and
distribution. When considering a non-OSS product, extreme care must be taken to consider the
control that the commercial business has and will have in supporting the product over the life
of the system. For all acquired software, data rights will be a significant contractual
consideration.

4.4 INFRASTRUCTURE FUNCTIONS SUPPORT
Intrinsic infrastructure functions are external to the UMAA and will be provided by the host
computing environment. Some examples of host functions include:

 Directory/Lookup Services
• Domain Name System/Service (DNS)
• Lightweight Directory Access Protocol (LDAP)
• Cybersecurity Services
• Access Control
• Auditing
• Key Management
• Enclave Guard
• Intrusion Detection
• Virus Scan

 Synchronized Time Service
• Network Time Protocol (NTP)
• Precision Time Protocol (PTP)

5.0 ARCHITECTURE DESCRIPTION

The UMAA is composed of a set of service definitions that define a foundational basis for an
autonomous UMV. The service definitions include the expected functional capability and
interfaces for the service. A system integrator builds the architecture by developing
interoperable software components compliant with UMAA to meet specific mission system
requirements. By adhering to the service definitions and standard interfaces, the integrator is
able to select the performers who are best equipped to deliver the required functionality for
each service. Other systems may use, extend, or scale their implementation by reusing, adding,
or removing services available in the library of available software services.
The architecture assumes a common autonomy data bus between all software components with
few exceptions (see Section 4.1). Specific program requirements may drive segmentation of
the bus for security or other design reasons. Accommodation will be made to share data across
boundaries as needed as determined by specific program requirements. Although the service
definitions include both inputs and outputs of the service, the service implementation and
interface can easily be modified to access any information that is published to the common
autonomy data bus to produce the expected output of the service. The architecture aims to
create decoupled services, which means the producer of the information is not required to
know the consumers. This allows new consumers to be added to the system without any impact
to the producer. The architecture will allow more than one instance of a service to be
instantiated and services to be distributed on networked computing platforms.

 UMAA-INF-ADD

 11

5.1 FUNCTIONAL VIEW
To enable modular development and upgrade of the functional capabilities of the on-board
autonomy, UMAA defines eight high-level functions. These core functions include: Mission
Management, Engineering Operations, Maneuver Operations, Processing Operations, Sensor
and Effector Management, Communications Operations, Support Operations, and Situational
Awareness. In each of these areas, it is anticipated that new capabilities will be required to
satisfy evolving Navy missions over time. UMAA seeks to define standard interfaces for
services for these functions, so that individual programs can leverage capabilities developed to
these standard interfaces thus allowing software libraries to be developed and shared across
programs that meet the standard interface specifications. Individual programs may group
services and interfaces into components in different ways; however, the interfaces and services
defined by UMAA will be required as defined in the ICDs. Figure 4 depicts a functional
decomposition of these eight core functions and representative capabilities within them.

FIGURE 4: UMAA HIGH-LEVEL FUNCTIONS

 UMAA-INF-ADD

 12

5.1.1 Mission Management
The Mission Management provides the management and execution of the overall mission and
governs the overall operation of the system. Figure 5 shows the functions of the Mission
Management. It provides the reasoning and planning that executes the mission on-board the
vehicle. The Mission Management will contain elements that are specific to a particular
program and mission. It will be responsible for decomposing the user-provided mission
objectives into executable tasks for services in the lower-level functional areas. It will
communicate over a common bus with the lower-level autonomy services using common
interface standards defined by UMAA derived documents. The Mission Management will
aggregate individual status of services to produce an overall mission status. Where applicable,
Mission Management will delegate self-contained operations to lower-level services such as
letting Maneuver Operations run a loiter pattern. Similarly, lower-level services will inform
Mission Management of operational state and constraints, so that these may be considered in
concert for overall mission planning and execution.

FIGURE 5: MISSION MANAGEMENT FUNCTIONS

Mission Management provides an UMV with the self-governing ability to perform its tasked
mission objectives using sensing to perceive the external environment (Sensor and Effector
Management and Situational Awareness), self-sensing to maintain its operational state

 UMAA-INF-ADD

 13

(Engineering Operations), vehicle maneuvering to proactively control vehicle dynamics
(Maneuver Operations), and communications management (Communications Operations) to
coordinate its objectives with external entities.
Mission Management can include the capability to perform dynamic planning and re-planning
in support of the tasked objectives, apply constraints to its operations, schedule activities,
manage its resources, manage what and when to communicate (status, tasking, data exchange),
operate in collaboration with other manned and unmanned assets, manage execution of the
mission, monitor progress, and perform the decision-making required to accomplish its mission
objectives.
One of the key functional differences between external C2 and the Mission Management is
which system is making the maneuvering decisions. For systems that require “operator-in-the-
loop” control mode, the C2 system will provide control of the path planning and maneuvering
(often provided as a script or manually directed). For systems that enable a fully autonomous
control mode, the Mission Management within the platform will provide path planning and
maneuvering executed via the Maneuver Operations. In the case of "operator-on-the-loop", the
mission autonomy can reach back to the operator for intervention and verification when
required. In autonomous operations, the Mission Management path-planning component will
generate a path plan for the UMV to meet its mission objectives. The path planner will also be
provided vehicle and payload constraints to enable it to choose a sufficient path to satisfy the
objectives within the constraint bounds. The path-planning component must be able to ingest
varying types of constraints expected in the implementation of the system. Constraints can
include such things as available power, risk of detection based on location and any
transmissions from vehicle or payload, payload effectiveness for its mission based on location
and vehicle dynamics, etc.
Multiple constraints could be fed into the path-planning component in Mission Management.
These multi-constraint inputs are defined independently from the path planner and allow for an
extensible architecture and implementation. Each constraint provider will use a priori or field
data along with algorithms to produce constraints that are provided to the path-planning
component. The constraints may have multiple formats such as weighted trajectories, heat
maps in local or geographic coordinates, or defined keep-out or keep-in areas.

5.1.2 Maneuver Operations
This function manages and controls UMV movement including movements due to mission re-
planning and regulating safe movements as shown in Figure 6. Maneuvering must take into
account vehicle constraints (e.g., maximum/minimum vehicle speed and accelerations,
minimum turning radius, maximum depth, fuel load, etc.) and current status (position, speed,
battery level, leak detections, etc.) as well as any configuration parameters (minimum distance
to obstacle, minimum waypoint closest point of approach (CPA), maximum cross track error,
etc.) associated with a particular maneuver. Regulating movements includes both the
execution control as well as status feedback for each specific maneuver. Maneuver commands
associated with general vehicle movement include waypoints, station keep, vector, etc.
Maneuver commands may be executed to ensure vehicle safety including reactive obstacle
avoidance and emergency vehicle procedures, etc. Maneuver constraints may be received from

 UMAA-INF-ADD

 14

other services within UMAA (e.g., Communications Operations, Mission Management), which
may further bound maneuver control.

FIGURE 6: MANEUVER OPERATIONS FUNCTIONS

The Maneuver Operations function exposes the vehicle’s navigation control and status for use
by the other UMAA services. The Maneuver Operations control interface receives the control
commands from the common autonomy data bus and translates commands to the vehicle-
specific protocol for execution of the command. Maneuver Operations acts to balance the
capabilities of the platform and the higher-level autonomy. It is expected that platforms will
expose interfaces at multiple levels of control including actuator level (e.g., throttle, rudder),
set point level (e.g., speed, heading, depth, turn rate), simple behaviors (e.g., waypoints, loiter
pattern) and potentially higher-level behaviors.

5.1.3 Engineering Operations
This function manages decision-making associated with the vehicle hardware and software to
include optimizing use of the vehicle resources as shown in Figure 7. It is responsible for
maintaining all of the HM&E systems on the vessel. Reconfiguration of the power plant,

 UMAA-INF-ADD

 15

electrical, software, and mechanical configurations are included. Management of these services
would include managing their configuration, maintaining and reporting health and status, and
providing control. Decision-making associated with both long-term maintenance and short-
term emergency recovery procedures is included. Status is reported to Mission Management
that would allow higher-level re-planning to take place when necessary.

FIGURE 7: ENGINEERING OPERATIONS FUNCTIONS

5.1.4 Sensor and Effector Management
This function manages and controls the payload suite, which may consist of sensor(s) and/or
effector(s) on-board the unmanned system as shown in Figure 8Figure 8. Managing the
payloads will be based on mission objectives and current situational awareness. Management
functions should employ necessary payloads as the mission progresses and adapts payload
configuration as the environment changes.

 UMAA-INF-ADD

 16

FIGURE 8: SENSOR AND EFFECTOR MANAGEMENT FUNCTIONS

Sensor and Effector Management will contain interfaces for payload control. There will be a
close tie-in with any payload control services on the remote C2 system with the Sensor and
Effector Management. One of the key functional differences between the C2 and on-board
autonomy is which system is making the payload control decisions. For systems that require
“operator-in-the-loop” control mode, the C2 system will be the primary driver for payload
operations. For systems that enable “operator-on-the-loop” or fully autonomous control mode,
the platform will be the primary driver for payload operations. Arming and firing sequence
autonomy functions are managed by the Sensor and Effector Management. The Sensor and
Effector Management may influence or direct other vehicle operations (e.g., maneuvering) but
only in coordination with Mission Management, which has the holistic view of vehicle and
payload operations.

5.1.5 Communications Operations
This function manages the bandwidth and packet routing to optimize the use of multiple
communication links based on factors including priority, compression, network availability,
and QoS as shown in Figure 9Figure 9. Communications Operations interfaces with all
communication devices onboard the UMV to manage emissions during emissions control
(EMCON) and other modes as directed by the Mission Management. Note that in most cases,
the very nature of communications for UUVs will be very intermittent due to physics.

 UMAA-INF-ADD

 17

FIGURE 9: COMMUNICATIONS OPERATIONS FUNCTIONS

Like the Maneuver Operations and Sensor and Effector Management, Communications
Operations relies on external constraints to guide the behavior of the platform and/or
communications systems. Communications Operations may produce maneuver constraints
based on information and algorithms specific to communications (see Maneuver Operations in
Section 5.1.2).
In addition to maneuver constraints that might limit where communications systems can be
active, there can also be schedule constraints that define when communications equipment can
operate. All of the communications control (location based and time based) is part of
Communications Operations. Multiple constraints, independent from the scheduler, create an
extensible architecture and implementation. Each constraint provider will use a priori or field
data along with algorithms to produce constraints that are provided to the scheduler service in
Mission Management. Communications Operations will also be responsible for reporting status
to the common autonomy data bus. In the event of communications faults, Mission
Management would be notified through that status and will adjust the plan appropriately.

5.1.6 Situational Awareness
This function maintains the Situational Awareness also referred to as the world model for
decision-making by Mission Management. This includes knowledge of allocated waterspace
(constraints on operational area for blue de-confliction in all four dimensions), the
environmental picture (bathymetry, nautical charts, and meteorological and ocean data),
contact picture (red, blue, and gray contacts, targets, obstacles, objects of interest), and
position, navigation, and timing (PNT) as shown in Figure 10. Situational awareness of the

 UMAA-INF-ADD

 18

environment in proximity to an unmanned vehicle is critical for navigation and mission
success. This includes both real-time perception of the environment through sensors and also
use of a priori data (current and historical) either loaded pre-mission or updated from external
sources in-stride. It encompasses using the processed payload and organic sensor outputs for
higher levels of knowledge inferencing such as what is done by target motion analysis and data
fusion of multiple sensors.

FIGURE 10: SITUATIONAL AWARENESS FUNCTIONS

The ability to perceive the surrounding environment is what enables safe pilotage including
operating in accordance with Collision Regulation (COLREGS). Situational awareness is
enabled by sensors such as sonars, stereo cameras, radar, etc., which detect, identify, and track
objects or other hazards in the surrounding environment. Situational awareness capability is
core to the execution of the autonomy decision-making and a critical part of this architecture.
Modular payloads can be added or interchanged without changes to Situational Awareness, so
that Situational Awareness is not coupled to a specific payload.
The architecture will enable Situational Awareness data to be published over the common
autonomy data bus in order to share information with the payload and other services of the
vehicle. The architecture functions that use this data may be required to locally transform or
store (cache) portions of this data to optimize their use of the data, but it is the intent of
Situational Awareness to be the single authoritative source of the data for the system.

5.1.7 Processing Operations
This functional area manages software services that refine data received from sensing and other
systems into higher-level information constructs as shown in Figure 11. Examples include
sonar beam forming, image processing algorithms, wake detection algorithms, and other
algorithmic type processing.

 UMAA-INF-ADD

 19

FIGURE 11: PROCESSING OPERATIONS FUNCTIONS

5.1.8 Support Operations
This function provides support capabilities for services that can be shared across all of the
other functional areas within UMAA (Figure 12Figure 12). These operations provide common
interfaces for infrastructure services.

FIGURE 12: SUPPORT OPERATIONS FUNCTIONS

5.2 INTERFACE VIEW
The UMAA utilizes network-based communications for the on-board exchange of data and
information between services. This transfer is critical to the objective of the UMAA and
follows a defined set of interface patterns that generalize the types of data exchanges being
made as well as the performance and failover characteristics. The UMAA primarily utilizes
three high-level interface patterns for inter-service communications:

1. Publish/Subscribe with a single data source and multiple consumers, e.g., navigation
data being pushed to multiple recipients (See Figure 13)

2. Request/Reply with data being provided from fixed sources to consumers, e.g.,
environmental data being requested by a consumer (See Figure 14)

 UMAA-INF-ADD

 20

3. Command/Response with data being provided from a single source to a single fixed
consumer, e.g., waypoint data being commanded to Maneuver Operations and a
response from the consumer (See Figure 15)

While it is recognized that all three mechanisms are useful for different purposes, the
Publish/Subscribe metaphor should be the primary pattern used to maximize de-coupling of the
system. In addition, different interfaces types such as streaming data that may be required and
would be outside these interface patterns. These other interfaces should follow relevant
standards as determined by the specific program. See section 4.0 for more on the architecture
guidelines.

FIGURE 13: PUBLISH/SUBSCRIBE

FIGURE 14: REQUEST/REPLY

FIGURE 15: COMMAND/RESPONSE

 UMAA-INF-ADD

 21

5.3 DATA VIEW
This section examines the UMAA primarily from the view of the data that is exchanged
between its components and services. It does not intend to delve into a definition of data, but
rather it focuses on data whose scope transcends internal boundaries and is required to be
distributed and/or archived. Specific data definitions will be documented in service-based
ICDs.
The UMAA has a few defining characteristics that affect the architecture with respect to data
management. First, services are not developed by a single provider or procured by a single
contracting entity, and their development and delivery schedules are not aligned. Therefore, it
is imperative that the specification of the data and its attributes must be properly managed, and
updates to the definition must be controlled and coordinated by a governing body that is not
associated with any particular service but responsible for the overall reference architecture
(UMAA). Second, the UMAA needs to consider processing power and hardware form factors
required for data processing (e.g., total available processing power) across the range of UMVs
that it will support. Therefore, some of the functions provided in the reference implementation
may not be available for some of the smaller, less capable platforms.
It should also be acknowledged that many of the processing resources in the UMVs may be
diskless, while other UMVs may have permanent data storage but may not be writable for
intermediate storage of data during mission. As such, it is sometimes necessary to develop
strategies for designing around these storage constraints.
Third, data within the UMAA deployed UMV is likely classified, and not all data is at the same
classification level. The UMAA must be carefully architected to enable separation of data at
different classification levels, and care must be taken to manage how (and under what control)
data will be taken off of the system. The UMAAB is working with cyber-security subject
matter experts as the architecture evolves to ensure the UMAA will support data across
multiple security levels when required.
Fourth, much of the UMV data is temporal. It needs to traverse the system within aggressive
latency constraints, and it has a fixed expiration time based on storage capacity and data recall
requirements.
Fifth, an UMV may employ data reduction and data compression techniques to reduce storage
capacity requirements or increase endurance. The UMAA interface definitions must account
for these latency and retention requirements, and handle them appropriately.

6.0 SUMMARY

The UMAA defines an architecture that includes service definitions, interface definitions, and
a reference implementation with the goal to create commonality across the Navy's family of
UMVs. Unmanned Surface Vehicle (USV) and UUV programs that leverage UMAA as their
foundation for their program-specific, on-board autonomy will benefit from a core set of
capabilities that enable the programs to focus on their specific mission requirements and not
reinvent common core capabilities, algorithms, and infrastructure. UMAA governance is
responsible to coordinate with programs to ensure interfaces and architecture definitions are
changed only as required, so that interoperability with other development efforts is maximized,

 UMAA-INF-ADD

 22

and critical interface compatibility with the UMV family is maintained. UMAA will evolve
over time as new capabilities, sensing systems, and vehicle systems evolve. It is anticipated
that there will be feedback to UMAA to incorporate program-developed services and update
the requisite interfaces.

 UMAA-INF-ADD

 23

7.0 REFERENCES

1. IEEE 1471-2000 – “IEEE Recommended Practice for Architectural Description for
Software-Intensive Systems”, 2000.

2. SAE AIR5665B – “Architecture Framework for Unmanned Systems”, 2013.
3. Standard Guide for Unmanned Undersea Vehicles (UUV) Autonomy and Control

(Withdrawn 2015), https://www.astm.org/Standards/F2541.htm
4. AS-4 JAUS Committee Fact Sheet,

https://www.sae.org/works/committeeResources.do?resourceID=592774
5. AS-4 UCS Fact Sheet May 2016,

https://www.sae.org/works/committeeResources.do?resourceID=493337
6. NAVSEA PMS 406 Unmanned Maritime Autonomy Architecture Board Charter Sept 2017
7. Open Architecture Assessment Tool (OAAT) Version 3.0

https://www.dau.edu/cop/mosa/Lists/Tools/AllItems.aspx.

https://acc.dau.mil/oa
http://www.navair.navy.mil/index.cfm?resourceID=592774
https://www.sae.org/works/committeeResources.do?resourceID=493337
https://www.dau.edu/cop/mosa/Lists/Tools/AllItems.aspx

 UMAA-INF-ADD

 24

8.0 ACRONYMS AND ABBREVIATIONS

ADD Architecture Design Description
ASTM American Society for Testing and Materials
C2 Command and Control
CCS Common Control System
COLREGS Collision Regulations
CPA Closest Point of Approach
DNS Domain Name Service
DoD Department of Defense
DWO Digital Warfare Office
EMCON Emissions Control
GOSS Government Open Source Software
HM&E Hull, Mechanical, and Electrical
ICD Interface Control Document
IEEE Institute of Electrical and Electronics Engineers
JAUS Joint Architecture for Unmanned Systems
LDAP Lightweight Directory Access Protocol
NTP Network Time Protocol
OAAT Open Architecture Assessment Tool
OSS Open Source Software

OUSD (AT&L) Office of the Under Secretary of Defense for Acquisition, Technology,
and Logistics

PEO Program Executive Office
PIM
PNT

Platform Independent Model
Positioning, Navigation, Timing

PoR Program of Record
PTP Precision Time Protocol
QoS Quality of Service
ROI Return on Investment
SAE Society of Automotive Engineers (archaic-no longer an acronym)
SOA Service Oriented Architecture
T&E Test and Evaluation
UAS Unmanned Aircraft System
UCS Unmanned Control Segment
UMAA Unmanned Maritime Autonomy Architecture
UMAAB Unmanned Maritime Autonomy Architecture Board
UMS Unmanned Maritime System
UMV Unmanned Maritime Vehicle

 UMAA-INF-ADD

 25

USV Unmanned Surface Vehicle
UUV Unmanned Undersea Vehicle
UxS Unmanned Vehicle
WG Working Group

	TABLE OF CONTENTS
	FIGURES
	1.0 INTRODUCTION
	1.1 UMAA Scope
	1.2 Related Standards
	1.3 Document Context
	1.4 Document Organization

	2.0 ARCHITECTURE GOVERNANCE PROCESS
	2.1 Unmanned Maritime Autonomy Architecture Board (UMAAB)
	2.2 Adoption of UMAA
	2.3 Reference Implementation

	3.0 AUTONOMY ARCHITECTURE DESIGN PRINCIPLES
	3.1 Modular Open Architecture
	3.2 Quality Attributes
	3.2.1 Enable Loose Coupling
	3.2.2 Allow Pair-Wise Changes
	3.2.3 Improve Sustainability
	3.2.4 Enable New Capabilities and Missions
	3.2.5 Enable Net-Centricity
	3.2.6 Enable Cross-Platform Domain Functional Commonality
	3.2.7 Enable Competition
	3.2.8 Enable Federated Acquisition
	3.2.9 Support Verification
	3.2.10 Support Software Reuse
	3.2.11 Support Data Quality
	3.2.12 Enable System Security
	3.2.13 Manage Obsolescence
	3.2.14 Support Safety Critical Software

	4.0 ARCHITECTURE GUIDELINES
	4.1 INTERNAL Communication Mechanisms
	4.2 Transports
	4.3 Utilize Open Source Software
	4.4 Infrastructure Functions Support

	5.0 ARCHITECTURE DESCRIPTION
	5.1 Functional View
	5.1.1 Mission Management
	5.1.2 Maneuver Operations
	5.1.3 Engineering Operations
	5.1.4 Sensor and Effector Management
	5.1.5 Communications Operations
	5.1.6 Situational Awareness
	5.1.7 Processing Operations
	5.1.8 Support Operations

	5.2 Interface View
	5.3 Data View

	6.0 SUMMARY
	7.0 REFERENCES
	8.0 ACRONYMS AND ABBREVIATIONS

